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FOREWORD

The study presented in this report covers a phase of a
theoretical investigation of curved jets supported by the U.S. Army
transportation Corps during the year 1960-1961 through the Air
Programs Office of the Office of Naval Research, under the terms
of Contract Nonr-2747(00).
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SUMMARY

A numerical solution of the two-dimensional curved turbuleat
and incompressible jet flow, using the IBM 7090 computer, is presented.
This solution is a straight-forward extension of the classical straight
jet soiution. Its only limitation is that it assumes similar velocity
profiles.

The solution is obtained by reducing the Navier Stokes partial
differential equations of the curved jet flow to a third-order total different-
ial equation of the Hartree-Skan type. This equation is integrated numeric-
ally on the IBM 70490 computer using a Runge-Kutta subroutine. The
boundary conditions are carefully established and discussed. The complete
program for the numerical solution is included in the report. A duplicate
IBM deck can be obtained from Aerophysics Company upon request.
Typical numerical results, in the form of velocity and pressure distri-

- bution across the jet are presented and discussed.
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LIST OF SYMBOLS

Constant, shape parameter of the curved jet
width of jet

constant = -A-EO:—

unknown function of the problem

= F'(7)

= G'(7])

jet curvature

mass flow

static pressure

radius of curvature of jet

part I: fixed characteristic length from the orifice, counted
along the x-axis
2 2

part II: carvilinear distance: ds
maximum jet velocity

=dx2+ dy

jet velocity component in x-direction

jet velocity component in y-direction

curvilinear system of coordinates, as defined in the text and
on figure 1

constant

constant

virtual kinematic viscosity

= ( y/x, dimensionless variable

viscosity

density

free constant, assumed equal to 8. (This is arbitrary, represents

only an order of magnitude)
empirical constant
stream function

Subscrigt

conditions at the distance s from the orifice
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INTRODUCTION

In spite of the remarkable success of inviscid theories to
predict the performance of hovering ground effect machines, it cannot
be concluded that viscous phenomena do not sometimes play an important
role in the understanding of the flow mechanics of hovering annular jets
in ground effect. In particular, the lack of an analytical grasp of viscous
effects has prevented until now the establishment of a satisfactory
mathematical theory of the stability of ground effect machines.

The major viscous effect associated with annular jet flow concerns
entrainment of air from the central cavity, the so-called "air cushion",
by the peripheral jet. When the base of the machine is parallel to the
ground, this entrainment results in a quasi-rotational flow under the
machine, which can be ignored for most practical purposes, especially
if the base is fairly close to the ground. However, when the base of the
machine is pitched with respect to the ground, a strong cross-flow
establishes itself, with an unsymmetrical pattern, and strong destabil-
izing pitching and rolling moments may appear. The seriousness of
this phenomenon depends obviously upon the amount of air which is being
entrained by the peripheral annular jet.

In a very elegant first approximation, Chaplin assumed
(Reference 1) that the amount of flow entrained by a curved jet was the
same as that of a straight jet, for which both theoretical and experiment-
al data are available (References 2 and 3). The purpose of the present
investigation is to approach the problem analytically, by extending the
classical straight jet flow theory to the curved jet.

A formulation of the problem: was made earlier by Boehler in
Reference 4 for a laminar jet and by Chang in Reference 5 for a turbulent
jet. Here, the turbulent case is considered, since it is well known that
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all jet flows obtained experimentally are mostly turbulent. Formally,

the equations of the present problem are the same as those of Reference
5. However, an important difference with Reference 5 is that the systems
of axes are defined differently. In all cases, the basic assumption is
made of the similarity of the velocity profiles. This assumption is
restrictive, and may turn out in the long run not to be justified.

However, it is a reasonable one for a first approach to the problem,
since it makes possible a closed-form solution of the problem and

allows a simple direct comparison with the straight jet case. Restrictive
as it may be, the assumption of similarity was also used in the analytical
solution of the boundary layer along a curved wall (Reference 6).

The solution is obtained by reducing the Navier-Stokes partial
differential equations of the curved jet flow to a third-order total
differential equation of the Hartree-Skan type. This equation is inte-
grated numerically on the IBM 7090 computer using a Runge-Kutta
subroutine. The boundary conditions are carefully established and
discussed. The complete program for the numerical solution is
included in the report. Typical numerical results, in the form of
velocity and pressure distribution across the jet are presented and
discussed.

The solution of the basic curved viscous jet is important not
only for an understanding of the flow mechanics of ground effect machines,
but for many other problems as well, such as those involving cavity flows
(base pressure of missile boosters for example) or the understanding
of the Coanda effect.

The two-dimensional solution can be extended to three dimensions,
if desired, by means of a Mangler transformation (Reference 4).
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I EQUATION OF THE PROBLEM

Historically, it was found (Reference 2, page 143 for example)
that the equations governing the flow of a two-dimensional jet emerging
from a narrow slit into a fluid at rest are formally the same as the

. boundary layer equations along a straight wall (with no pressure
gradient); actually the two-dimensional jet case is one of the few :
cases where the Navier-Stokes equations can be integrated exactly. ?

Similairly, the equations of motion of a two-dimensional curved
viscous jet are for:mally the same as those of the boundary layer along
a curved wall. The general Navier-Stokes equations for the flow along a
curved wall and their simplification by use of the standard boundary- ?
layer approximations are discussed in detail in Reference 6. These
equations are directly usable for the two-dimensional curved jet, as
pointed out in Reference 4. One difference, however, lies in the defini-
tion of the system of axes and coordinates. This point bears a detailed
discussion which will be made here.

PR

For the boundary-layer flow along a curved wall, the choice of
the coordinate system is obvious (figure 1 a). It is a curvilinear system
of coordinates in which the x axis is in the direction of the wall and the y
axis is normal to it. The stagnation point is taken as origin of coordinates.
The curvilinear net therefore consists of curves parallel to the wall and
of straight lines perpendicular to them. The corresponding velocity
components are called u and v and the curvature at a point x is K(x),
which is a continuous function of x and is positive for convex and
negative for concave curvature. For the laminar case and for moderate
wall curvatures, it is shown in Reference 6 that the boundary layer
equations reduce to:

R =-1 ) 2
3 evdl

BN T AN Y




Similarly, for the turbulent case, the equations of motion
reduce to:

2
¢ ua du v ) 1 9
5% * ﬁ--—,sw%ﬂ—%-y%
ﬂ<-%§—-pl(u2

b u v
Xt iy e 0

€ is the kinematic viscosity which is assumed to be determined
from Prandtl's mixing-length theory (Reference 2, Chapter XIX). In
general:

€ =X by - Upip)
here: (IIT) €= X, b U

where U denotes the maximum velocity, b the width of the mixing zone
and X,is an empirical constant. € is assumed to be independent of y.

Denoting the center-line velocity and the width of the jet at a
fixed characteristic distance s from the orifice by Us and bS respective-
ly, we may write:

-1

2
U-Us(—:—) ; b-bs_}s(_

Consequently:

3

€= €,(2)° with €,= Xp U

Further, the assumption of similarity results in the turbulent case in:
(IV) n=0 ¥

where  ( is a free constant. 4
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We may now come back to the problem at hand, i. e. the curved
jet (fig. 1 b). The main difficulty in trying to apply the above boundary
layer equations lies in the definition of a system of coordinates. One is
first led to separate the jet into two regions: the "inside" jet and the
"outside' jet. The line which separates the two regions is then defined
as the "axis'" of the jet. At the outset, the shape of the axis is not known.
It will be shown later on that, out of many possible such axes, only one

. must be chosen, for no better reason than because that particular choice

leads to a possible reduction of the Navier-Stokes partial differential
equations to a single total differential equation. Thus a two-dimensional
curved jet flow is the sum of two flows respectively analogous to the
boundary-layer flow along a concave wall of curvature - R and that along
a convex wall of curvature + R. For each region, then, using the proper
sign of R, the above equations I and II hold.

One would be tempted to say that the maximum velocity of the
flow U defined before in connection with the definition of the kinematic
viscosity (equation III) is the center-line velocity, i. e. the velocity along
the "axis' of the jet, as is the case for the straight jet. We shall see
later that this is not the case. Indeed, one could arbitrarily define the
axis as the line of maximum velocity; however, this condition would be
insufficient to determine the equation of the axis and would lead to
analytical difficulties in the solution of the problem.

By analogy with equation (IV) of the boundary layer case, the
assumption of similarity of the velocity profiles is used in the solution
of the curved jet case. The hypotheses of Prandtl's mixing-length

: . theory are also assumed to hold, possibly with different values of the

arbitrary constants, so that the maximum velocity U still varies like
the inverse of the square root of x.

In the algebraic calculations involved in passing from the Navier-

Stokes partial differential equations to the total differential equation, it is
sufficient to consider only one-half of the problem, i. e. either the
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inside or the outside jet, since the other half can be obtained by changing
the sign of the radius of curvature in the equations.

The problem of the curved viscous jet can therefore be stated as
follows:

b 1 2
xSy g3k €24 (1)
-%—%- IOKuz (2)
\
-{—%+ ;-0 (3)
3
X
€ = Xb,Ug(5) (4)
M= % (5)

To solve these equations, one can, as for the straight jet, define
a stream function, W which is assumed to be of the form:
-1 2 %
Ve O Ug s° x* F(7) (6)

F(n) is the unknown function, the determination of which will give the
solution of the problem.

Expressing the velocity components in terms of F and F' and
substituting into the momentum equations, one can replace the partial
differential equations by one total differential equation involving the function
F. It must be noted that, in the following derivations, some liberties have
been taken with respect to the notations for partial differentiation. These
equations have been checked very carefully, however, and are believed
to be correct. The calculations are as follows:

.- Wa D - -
u _ps\_)g _ﬁy%ny_ Ug (_8)% F(N) (7)
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v---%'-\-g- —%‘-(—;—)z [7{5"(72)'?@} (8)

from equations (7) and (8), the left-hand member of equation (1) can
easily be calculated.

Next one must calculate —%—%, using equation (2) and substitute
the value thus found into the right.-hand member of equation (1). In keeping
with the general assumption of similar velocity profiles, one will assume that
y only appears in the expression of p through the termn . Hence:

Dp = D )T‘

VX ° X (9)
Further:

3= 35 (10)

From equation (2):
2P . 2
>y K pPu

From equation (7):
1
u=U, (22 F() (11)
We stated earlier that y could not appear formally in the

expression of p; similarly, it cannot appear in the expression

of —s-f( . Therefore, equation (11) is only meaningful if the product Ky is
a function of 7( alone. Rather than attempting to solve the problem for
any function of 7[ , one can choose a particular one, the simplest one, for
example a linear function of 71 . One is therefore led to put:

Ky==37] (12)

where A is a constant.

P
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or: 2Ky-A71 (12b)

By substitution, equation (11) simplifies to:

P 2 8 A '
S PU -3 F2 (13)
Note that, now, equation (12) defines the center line of the jet.

By substitution, one finds the following differential equation for F:

1

AN+ LF24+ FF'+53F"=0 (14)

after letting:

68% \}—U%:— (15)

which is legitimate since X f in the expression of € s is a free constant.

Naturally, from equation (12), if A= 0, the curvature K of the jet
is also zero. A = 0 corresponds to the straight jet case. Equation (14)
reduces then to:

r2+FF"+§Fm=0 (16)

Equation (16) is the differential equation of the straight jet solution (Ref-
erence 2, page 498), as it should be.

The solution of the curved jet problem: amounts to finding a solu-
tion of equation (14), which also satisfies the proper boundary conditions.
This solution must be referred to a system of axes which still remains to
be determined. What one knows at this point is that the axes are defined
by equation (12b): 2Ky= AJ] . Before proceeding with the solution,
we shall determine the center line of the jet and these axes analytically.
Obviously, the center line will consist of a family of curves depending upon
one arbitrary parameter A.

R i et i Sk OO e < Skt



II SHAPE OF THE JET

The shape of the jet is defined by the equation

Ky«

where: x and y are curvilinear coordinates along the curve, as shown
on the figure
K is the curvature of the center line of the jet
N= 0 y/x, where ( is a constant
A is a parameter

AN Ty

-y,
y S
Xy '3 X‘ VR

When one looks for the equation of the shape of the center line of the jet,
which we have called x-axis, one must find this shape with respect to

a fixed system of rectangular coordinates x; and y;. The unknown
equation of the curve is y1* ¥y (x) and is defined by the following intrin-
sic equation (since x becomes S1» length of an arc on the curve):

Ky = A/2 0 (y/8))
or K=A J/2(1/s)
Defining a new constant C= A @ /2, cne has:

K= C/sl

Ak« Ve a1 s £ e an
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Therefore, one wishes to find the curves for which the curvature
at a given point is inversely proportional to the length of the arc between
the origin and that point, the length of the arc being defined by the differ-
ential relationship:

2 2 2
dsl -dxl + dyl

For simplification, we shall drop the suffix ''1" in all that follows. Let
us remember, though, that the curve to be found will be referred to the
fixed system of coordinates x,0y,.

The radius of curvature R = 1/K, is given by
3/2

Re ey (17)
The intrinsic equation is:

K= C/s (18)
Therefore,

R=(1/C)s (19)

Differentiating with respect to x, there comes:

dR _14ds

& “Cax (20)
but B, Viey2 (21)

dx

1/2 3/2

and dR - 3/2 [1 + y'2] X 2 ' n2 - ym [1 + yv2] ( 22)

dx ] ) y

1/2 3/2

o o3 [1eyd ayy2oym1s 47 (23)

y"
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Substituting @ and @) into equation (4), there comes:

3(1 + y02)1/2 yvynz -y (1 + yq2)3/2 =1/C(1+ yrz)l/z ynz
Simplifying, one finds:

3y'y"2 -y 1+ va) =1/C ynz (24 )
The problem is reduced to solve equation (24), a third order differential
equation, the solution of which gives y = y (x)
Note that the equation is homogeneous and that neither x, nor y appear in
it. To solve it, let us first consider y' = dy/dx as the variable and
y's= a2 y/dzl(2 as the unknown function. Therefore, let

y' = t, independent variable

y''= p, anknown function
One has:

el B B & e

The above equation is therefore of the form:
F(t,p,p') =0
Substituting, one finds:
3tp? - p'p(1 + 1) - (1/Cp? = 0
Dividing by p, there comes:
3tp - p' -p't2 -p/C=0
or p' (1+t2)+p(1/C-3t)-0

or ‘. 3t-1/C
5 ve

- 1/C 2tdt dt
Logp= [ st dt = % 1-»,—?'

1-|-t2

I e LW R mem
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Logp=3/2 Log (1 + tz) -1/C tan™l t 4 Cy (25)

going back to the original variables, one has:

-1

Log y"=3/2Log (1 + y'2) -1/Ctan™t y' (26)

Equation (26) is a second-order differential equation which is again homo-
geneous, and in which y does not appear.

Consider now y as the variable and y' = dy/dx as the unknown
function

%%*y'-p
hence: —%‘Y ’_a%_ %yi_d{_'pp

Substituting into equation (26), one finds now:

Log (p p') = 3/2 Log (1+p2) -1/C tan'lp (27)

or: Logp + Logp' =2/3 Log (1 + pz) -1/C tan~! p

Log%E Log(l+p)-Logp ttanlp

2,3/2 -1
gg_ (1 + p°) e-(l/C)tan p
y P

Therefore, inverting:

dy = (1/Ctan"lp o
(1+ ph

g 1/C tan'lp dp )

(1+p

12



to solve the iniegral, let us make the change of variable tan” 1p =u
or: ps=tanu

dp = (1 + tan? u) du

hence: ys= [____tan 4 3 eu/c(l + tanzn) du
(1+ tan2 u)

Simplifying, there comes:

- tan u u/C 4
d [(1 + tanzu)l; z ° l

2

1
but —————g—®=cos8" u
1+ tanu

. sin u u/C
hence: y= [cos g cosu e du

Y"[sinueu/cdu (28)

Equation (28) can be integrated (Burington, Equation 312):
(where a= 1/C, b= 1)

eV/C (1/C st ) (29)
= sSin u - Cos u
y 1+ 1/—C-z

together with: p = tan u

Going back to the original variables, one has:

°“/C__T (1/C si cos u) (30)
" P nu - S U
y 1+ 1/C

%-t&nu

Let us now differentiate the first equation (30) and substitute
into the second one:

13
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u/C

dy = e sinu du

therefore:

dx-w?%-- eV/C -:%%—3——du-eu/c cosu du

cosu
x-feu/c'cosudu (31)
Equation (31) can be integrated (Burington, Equation 314):
- eu/ Cc
finding: x= T+1ce ((1/C)cosu + sinu)

Therefore, the parametric representation of the desired curve
is as follows:

' (wo inu) - € ) (32)
xm & __ cosu + sinu) -
1+1/C* 1+ C?
eu/C Cz }
- ( (1/C)sinu - cosu) + ——
y 1+ 1/C 1+ C
%)x(- tanu /

This equation is plotted in Figure 2 for C= 0.5, C= 1.0, C=2 and C = 4.

14
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Il PROCEDURE FOR SOLUTION

The equation to be solved is: 4 !

AR+ DF24 FF 4 3F a0 (14)
An approximate solution of this equation was given in Reference 5.

Here, a numerical but exact solution is discussed, which makes use of the
IBM 7090 digital computer.

The equation is solved using the Runge-Kutta method. Putting:

F's G (33)
F'sG'= H (34)

equation (14) becomes:
2 1 (]
(AN +1)G"°+ FH +gH' =0
or:  Ha=-2{(AN + 1G?+ FH] (35)
The system of equations (33) to(35) can then be solved numerically using
the digital computer, after the initial boundary conditions are specified.

A thorough discussion of the boundary conditions will now be made.

The thee boundary conditions suggested and used in Reference 5
are a8 follows:

at =0 F (0) =0 (36) i
at N =) F(0)=G({0)=1 (87) ‘
at Mmoo Fleds Gd = 0 (38)

Preliminary runs on the computer indicated that the above boun-
dary conditions are neither correct, nor sufficient to solve the problem.

15




For these early runs, the following procedure was adopted: the numerical
calculations start from 7( = 0. One needs therefore to know the initial
conditions on the function F and its derivatives at 7] =0, i. e.:

F(0), G(0), H(0)

Equations (16) and (17) give:

F(0)= 0
GO0)=1

There rer..ains to assume: H(0) = X

From equation (7), if one plots u, x-component of the velocity, ugainstn ,
H(0) = QX represents the slope at n= 0 of that velocity distribution.

For the straight jet, H(0) = 0 (the velocity profile is symmetrical with
respect to y = 0). For the curved jet, H(0) can have any value between

0 and o . For small curvatures, however, it stands to reason that

H will be small. For example, for A= - 0.25, one found H =~ - 0.13.

One can then start from an arbitrary value H,(0) = X, and
integrate the equations (33) to (35) numerically. It was found that incre-
ments of 7( equal to 0.02 were satisfactory. In principle, one inte-
grates until 7( = oo . Inpractice, for computational purposes,
"infinity'" can be defined as the value of 71 for which G( 7( )= 0 +0.000 005.
It was further found that, instead of using a variable Tl (oo) for
which the above criterion would be satisfied, it was just as accurate and
simpler to carry out all calculations up to 71 = 4 and take infinity at

N = 4. This viewpoint was carried out in all subsequeat calculations.
An additional difficulty which occurred because of the use of 7( = 4 in
lieu of "infinity" is discussed later on. The trial values (X, O(,(X 4
of O can be adjusted until the boundary condition (38) at infinity is
satisfied with the desired accuracy.

16
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The printout of early programs consisted of four columns of
numbers showing respectively 7] , F, G and H for all values of 7]
between 0 and 4 with (A?I = 0.02). The velocity distribution across the
jet in each case could be obtained by plotting G against 7' , as shown in
the sketch hereunder. G

A Glo)=|
Apes =+ A, A t=A,
TNSIDE OUTSI|IDE.
AVITY CAVITY

o
' n

It immediately became apparent that the three boundary conditions
(36) to (38) were not sufficient, but that one also needed to have the
boundary condition H( o) = 0 (i. e. the slope of the velocity profile at
infinity had to be zero), in order to have physically-possible velocity
profiles. Thus, it would appear at first sight that one had now four
boundary conditions: F(0) = 0, F'(0) = 1, G(oo ) = 0, H(oo ) = 0 and that
the problem would be overdetermined. Such is not really the case.
The difficulty is due to the fact that one had to replace infinity by a finite
value of 7 (n = 4), in order to save lengthy step-by-step integrations.
It turns out that the boundary condition G( e ) = 0 is, for numerical
purposes,equivalent to the two conditions: G(4) = 0, H(4) = 0. If one
were to be at infinity, G( oo ) = 0 would automatically entrain H(eo ) = 0,
which therefore would not have to be prescribed as part of the problem.

At T{ = 4, if one were to specify only one of the two conditions:

G(4) = 0, H(4) = 0, either of the two situations pictured hereunder could
take place, both being physically unacceptable:

17
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¢4)=0

G40

N\ — 1

In all subsequent calculations, it was therefore accepted that
the boundary conditions of the problem at infinity could be replaced by
G(4) = 0, H(4) = 0. In fact, one sometimes had G(4) = 0, but one never
could have H(4) = 0. One usually had to be satisfied with H(4) £ 0.003.

The next step in the work was to set up an iteration procedure
for H(0) =CX;. This could be done simply by assuming two initial
values (X,and 04 9 and setting up an interpolation formula from which
the desired value of (X could be determined. This formula is not discussed
here, but was included in the first program, which is reproduced in part
IV of this report. Convergence was very rapid (usually 2 or 3 iterations).

During the early runs, an alternate method of approach was
tried. The iteration was carried out backwards from T( = 4 to 7? = 0.
The initial boundary conditions were then:

F(4) = /3 , assumed value
G(4) =0 ,
H(4) =0

The value of [{ was changed until a value was found which satisfied the
boundary condition G(0) = 1.

This method turned out to be unsatisfactory for many reasons.
At best, it had no marked advantage over the direct integration method.
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At worse, it was very inaccurate, because the result depended greatly
upon the assumed values of G(4) and of H(4). If one assumed G(4) = H(4)=0,
the numerical integration would never get "'started", because these con-
ditions could only be satisfied at infinity. One had to assume, for example,
H(4) = 0.000 005. Then, it turned out that the whole solution depended -

greatly upon the assumed value of H(4). The backwards integration was
therefore abandoned.

To summarize these early investigations, for any given value of
a parameter A, the equation:

AN+ DF2e FF + 3F" =0
subject to the boundary conditions:

FO0) =0
GO)=1
H(oo )= 0

gives a unique solution: F(n), G( | ), H(II ). This solution is obtained
by determining by an iteration formula the quantity ({ = H(0), such as to
satisfy simultaneously: G(4) ~ H(4) =O0.

After a number of runs were made, it became apparent that the
above formulation of the problem is not correct. Naturally, in retrospect,
this became obvious: it is interesting to see how a numerical investigation
can lead to a better theoretical understanding of a problem! None of the
statements made above are wrong; however, an important boundary
condition has been omitted; that which expresses the matching on the
axis of the ""inside' and of the "outside'" jet. For a given value of the
constant A, say Al, the inside of the jet is found as solution of the
equation:

(ANt DF2+ FF 4 3F" =0
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the outside of the jet is found as solution of the equation:

<Ay N + DF2+ FF 4y

F"=0

These two equations are obviously distinct. If one solves them together
with the boundary conditions (36) to (38), one must now express in addition
that the slope Hi(O) of the velocity distribution for the inside jet is equal
in absolute value to the slope H,(0) of the velocity distribution for the
outside jet. Numerical results as well as intuition tell us that there is

no reason why this condition should turn out to be satisfied automatically;
the problem as stated above is therefore overdetermined.

A reexamination of the hypotheses indicated that the problem can
be stated correctly for the complete curved jet by eliminating boundary
condition (36): F(0) = 0. This condition was written initially by analogy
with the straight jet case, in which case it was a consequence of symmetry,
since, for the straight jet, v = 0 on the axis (there is no cross flow across
the axis). Because of the formal resemblance between the equations for
straight and for curved jet, here again F(0) = 0 is equivalent to have v= 0
at T( = 0, i. e. on the axis (this can be seen immediately from equation
(8) ). This condition would be justified if the axis was a streamline.
However, as explained before, the axis of the jet (line Tl = 0) is defined
by the condition 2 K y = Arz , and this does not make it a streamline.

The boundary condition F(0) = 0 can therefore be dropped without inconsist-
ency and replaced by the condition that

H(O)] inside * H(O)] outside (39)
@"'to @".80

In the remaining part of the investigation, the boundary conditions
(37) to (39) were therefore used in connection with the numerical solution
of equation (14). The complete solution was obtained in two steps, which
will now be described in detail.
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To obtain a numerical solution of the problem, it is still necessary

to start with numerical values of F(0), G(0) and H(0). As before, G(0) = 1
and H(0) can be obtained by iteration, assuming initially two arbitrary values

(04 1 and X 9 It would have been possible to set up an iteration proce-
dure for F(0) similar to that developed for H(0). Instead, it was found
simpler to find the proper value of F(0) graphically. A first program was
written, simply to establish in all cases the proper initial values F(0),
G(0), H(0). The graphical procedure is illustrated in figure 3, corresponding
to the following initial conditions:

F(0) = 0.001, 0.005, 0.01 successively
G(0) = 1
F'(oo )= 0

A=+ 0.25; A=-0.25

In each of the 6 cases above, equation (14) was integrated numerically and
H(0) found by iteration. The result is plotted in figure 3 in the form of F(0)
against H(0). In this, as in all subsequent cases, it was found that F(0)
varied linearly with H(0). The value of F(0) corresponding to the solution
of the complete jet is found, according to boundary condition (39), as the
intersection of the two lines A= + 0.25 and A = - 0. 25 on figure 3.

The above calculations were repeated for a number of values of A
between 0.025 and 0.50. Some of the results are shown in figure 4. Next,
the solutions of the curved jet problem F(0) and H(0) found as described
above were plotted against the parameter A The results are summarized
in figure 5. One startling result came out unequivocally: H(0) varies
linearly with A; i. e. the slope of the velocity distribution curve at 7[ =0
varies linearly with the parameter A which determines the shipe of the jet.

The variations of F(0), G(0), H(0) as a function of A are interesting

to follow on figure 5, starting from A=0. A =0 corresponds to the straight
jet; in this case, as we know, F(0) = 0, G(0) = 1, H(0) = 0. As A increases,
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F(0) becomes negative while decreasing, then starts increasing, becomes
zero and next becomes positive. This means that the velocity v across
the axis of the jet is positive for small curvatures and becomes negative
fur large curvatures (this comes out of equation (8) ). As A increases,
G(0) remains always equal to 1 and, as noted before, H(0) increases
linearly with A.

Figure 5 therefore completely depicts all initial conditions of
the problem which automatically satisfy the boundary conditions (37) to
(39). The information of figure 5 can therefore be used in lieu of the
boundary conditions, hence reducing the machine program to a straight-
forward numerical integration without iterations or cross-plots.

A second program was therefore prepared to perform the Runge-
Kutta integration, for known initial values F(0), G(0), H(0). This program
is listed in part IV of this report. Note that the information contained in
the first program is also listed in the second one, but is not used.
This was done so that, if somebody wished at a later date to obtain F(0)
and H(0) with great precision, this could be done without having to revert
to the first program. Therefore, the first program is listed in part IV
for information only, since all that it contains is also contained in the second
program.

Prﬁvi ons were made in the second program to calculate the
integral * 2( n) d7] andpriat the result. This allows to calculate
the pressupv distribution across the jet as follows:

From equation 13, an elemental pressure variation across the jet
is given by:

2 8 2

®=pu’ § 5 *n)an
U i-U ’

Remembering that: s

. 1 2 2
onehas.dpnsz AGd]p
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The total pressure across the jet is therefore:

Ap=3 puta f cin)ay

-— O
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IV PROGRAM

Two programs are shown here. The first program was used to
obtain the data of figure 5. The second program is more gener al and
includes the elements of the first program as an option.

All symbols used are defined; listings of the two programs are
shown, as well as the data card input.

Symbolic location Contents

A Constant in differential equation (12)

ABSF Closed subroutine used to compute the absolute value

AF Initial value of F (i. e. F(0))

ALP ( n ) Initial value of H (i. e. H(0) )

DEL X Increment of Tl (DEL X =0.02)

EN Maximum numerical value of 0] (EN = 4)

F( n ) Unknown function of the problem

F1 7] at specified interval of integration

G(N) =F ()

G1 Value of G from the previous integration step

H(N) =G (7))

II index of values of A

I1J iteration counter

npP index variable for the value of F(0)

INT closed subroutine which initiates the subroutine RWINT
(SHARE distribution)

INTM subsequent entries to RWINT
Note: DAUX is used by RWINT to compute the deriv-
atives G and H.

IOP print option: if non zero print every case

if zero, only print the converged value of H

JJ variable index used to go from one value of H to the next
one

K index variable used in interpolation formula

M the number values of A

24



Symbolic location

Contents

MM

oP

T(2)
T(3)
T(4)
T(5)
T(6)

Maximum number of iterations and maximum number
of values read in for F(0)

option
n
delta 7(
F(0)
G(0)
H(P)

Additional symbols for the second program

G 11

G 12

NN
SIMPUN

G square
sum from 7, to 7, of G square d7]
option whether to compute G 12 or not

Closed subroutine to evaluate the integral sum of G2 d )?
(SHARE distribution).

25



e g e e v

o S —— e 1

ot s b v e

L e e e weeae amop v

17

1
39

FIRST PROGRAM

DIMENSION A(100),T(100)F(1000),6(1000},H(1000)},ALPIL{100),ALP(1000
1) +F1(500)
Xe AF(100)
COMMON A'T'FyG,H'II'ALP]'ALD
Xy F1
16 FORMAT (78HO FTA F G
X H )
READ 10
10 FORMAT (T72H1
X )
PRINT 10
READ 12,EN,MyMM,DELX, (ALP(JJ)yJJ=1,2),10P
12 FORMAT (1F6.Cy21643F1b6.6,106)
REAC 13, {(A(I),I=1,M)
13 FORMAT (4F16.6)
READ 170, AF(I),1=1,MM)}
0 FORMAT(UETG.YH)
PRINT SO,EN MyMM, (ALP(JJ) ¢JJ=1,2),DELX
S50 FORMAT (25H0 THE UPPER LIMIT ON ETA=F6.2/27H0 THE NUMBER OF VALUE
XOF A=]16/30HOMAXIMUM NUMBER OF ITERATIONS=16/22H0 I+]TIAL VALUES OF
X H=2F16.6/12H0 STEP-SIZE=F16.6)
PRINT 51
51 FORMAT (1HO,30X,8HA-VALUES )
PRINT 521(A(I)'I="M)
52 FORMAT (30X,F16.6)
11=1
IF(IOP) 53,53,55
55 SENSE LIGHT 2
53 SENSE LIGHT 1
Jd=1
1iP=1
K=1
[1J=1
IF (EN) T4,14,15
14 CALL ENDJOB
15 T(2)=0.0
T(3)=DELX
T(u)=AF(11IP)
T(5)=1.0
T(6)=ALP(JJ)
I=1
CALL INT(T,3,1,0,0,0,0,0,0)
FI{D)=T(2)
FILI1)=T(4)
GII)=T(5)
H(1)=T(6)}
I1=1+]
77 CALL INTM
FI1{1)=T1(2)
FII)=T(&)
GULI)=T(5)
19 HI1)=T(6)
I=1+1
IF(EN-T(2))18,77,77
8 IF(ABSF(T{5))-.0005) 39,39,u40
SENSE LIGHT O
GO TO 22
B0 IF(SENSE LIGHT 1) ui,u45
4l JJd=JJd+)
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gy

us5

56
25

21
22

17
23

30
32

33

35

190

180

191

192

193

31

Gi=T(5)

IF (SCNSE LIGHT 2) 21,45

ALP( K+2)= (ALP(K+1)=(T(S)»(ALP(K)=ALP(K+1))/(G1=-T(5))))
JJ=K+2

K=K+

G1=T(5)

[1Jd=11J+1

IF(I1J=MM) 56,56,80

IF(SENSE LIGHT 2) 21,15

PRINT 25,114

FORMAT (20X,16,21H ITERATIONS COMPLETED)

SENSE LIGHT O

119=1

GO0 TO 22

SENSE LIGHT 2

PRINT 10

PRINT 16

PRINT 17,A(11)

FORMAT (1HO,40X,Fl16.06)

I=1

PRINT 31,FV(I),F(I)yGlI)yHI(I)

IF(EN-F1({1))30,30,32
IF(SENSE LIGHT 2)33,35
I=1+)

GO Y0 23

CONTINUE

SENSE LiGHT 2
IF(I1J-MM) 15,15,35
1IP=11IP+1

11J=1

IF(1IP-MM) 190,180,180
SENSE LIGHT 1 .
SENSE LIGHT 2

K=

JJd=1

GO T0 15

11P=1

11J=1

II=11+1

IF(ALII)) 191,192,192
JJy=1

ALP(JJ)==ALP(JI)
ALP(JJ+1)==ALP(JJ+1)
GO TO 193

JJ=1
ALP{JJ)=ABSF(ALP(JJ))
ALP(JJ+1)=ABSF(ALP(JJ+1))
SENSE LIGHT 1

SENSE LIGHT 2

K=}

Jd=1

IF(II-M)15,15,14
FORMAT (4F16.6)

END
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SUBROUTINE CAUX

DIMENSICN AC100),TC100)4F{T1000)45(1000),HL1000),ALPI{100),ALP(1000
1) +F1(500)

CCNMMON AgToF,GoHyI1ALP 1,ALP

T(7)=T{5)

1(d)=T(6)

TUP) =2 {CA(II)aT(2)41. )T (S)eT(5)+T{4)uT(6))

RETURN

ENG
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16

10

121

12

13

170

50

52

55
53

Tu
15

77

19

SECOND PROGRAM

DIMENSTO ACID0) T 100D, FEIGD0Y 50 1000) yHUINON) LALPT(IC)) , ALE (1000

1),71(503)

XeAF(120)

Xy G11(580),612(5C0)

CUMON Ay‘,F,.}nHyl‘.AL"l,ALP
XeF 1

XyUIlgG'?

FGRMAT (120HC FTA

X H G{SOUARE ]}
KRear 10

FORMAT (72H1

X )

PRINT 10

READ 1271 My, MM, TOP, N, DELX
FURNMAT(U]6,F16.6)

REAL 12, EN,(ALP{JJ),JI=1,10P)
FCRMAT (WF16.6)

FORMAT (LF16.5)

READ 170, (AF(1),y{=14MM)
FORMAT(UEVO . U)

F G
SUMIS((SQAUARE)I X)) ETA ) )

FORMAT (25H0 THE UPPER LIMIT ON cTA=F0.2/27H) THE NUMAER OF VALUE
XOF A=1A/30HOMAX IMUM NUMBER OF ITEATIONS=16/272H3 INITIAL VALUES OF

X H=2F16.6/12t.0 STEP-SIZE=F1t.0)
PRINT 51

FURMAT (1HO, 20X ,0HA-VALUES )
PRINT S524,(A(1),I=1,M)
FORMAT (50X,F16.6)
I1=1

IF(ICP) 93,53,55
SENSE LIGHT 2

StmSE LIGHT 1

JJ=1

11p=1

K=1

114=1

IF (EN) Mu,lh,15
CALL ENDJOB

T12)=0.0

T(3)=DELX
T(W)=AF(IIP)

1(5)=1.0

T(6)=ALP(JJ)

I=1

CALL INT{(T,3,1,0,0,0,0,0,0)
Fitl)=1(2)

FOI)=T(4)

Gi1)=T(5)

H(I)=T(6)
GUI(L)=53(1)=C(I)
I=1+4}

CALL INTM

F1(1)=T(2)

F(1)=T(W)

GiI)=T(5)

H{I)=T(6)
GHI{I)=G{I)*G(])
I=1+1
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1500
1501

1502

1403
151

13
39

W0
4

L5

S6
He
25

21
22

23

30
32

33

35
190
1901

1900

160

TF(EN=TLZ)YV00, 17, (7

TFINY) Thyib, 1801

Nivl=2

DU 1Mz 1=l ,NN
GI201)=SIMPUNIFTILT)sG 11 LT) 4NN
PRINT 10

PRINT 16

DO 1303 I=1,000

PRINTIZV VU g F D) g D)y HED) 1T ,6Y2(1)
FOMAT(6F16.8)

Jd=JJd+1

[12=11P+]

[1=11+1

TF(J)=-10P) 15,15, 14
IF(ARSF(T(5))=-,0005) 39439443
SenSE LICHT ©

GG TG 22

IF(SENSE LIGHT 1) ul,us

JJd=JJd+1
Gl=T(5)

IF (SeHSE LIGHT 2) 21
ALP( K+2)= (ALP(K+1)~-
JJ=K+2
K=K+1
Gl=¥(>5)
110=11J4+1
IFCITJ-MM) 964956,8C
IF(SLNSE LIGHT 2) 21,15

PRINT 25,114

FORMAT (2CX416421H TTESATIONS COMPLETIN)
SENSE LIGHT ©

11Jd=1)

Gu 10 22

SENSE LICHT 2

PRINT 10

PRI NT 16

PRINT 17,A(11)

FORMAT (THC UOX,Flo.s)

I1=1

PRINT 31,FY(1) F(I),G(I)yHIT)
IF{EN-F1(1))3),30, 3¢

IF(SENSE LIGHT 2)33,35

[=1+)

o0 TQ 23

CONTI NUE

SEnST LIGLHT 2

TF(TIJ-ME) 15,15,3>

IIP=11P#+1

11J=1

IF(IIP-MM) \90.1.)0,150

SENSE LIGHT

[FCIOP) 1900,190C2,19CH

SENSE LIGHT 2

K=1

Jd=1

GG TO 15

11P=1

» 15
(TUS) e (ALP(K)=ALP{X+1))/(31-T(5))))
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19

192
193
1930

1933

31

11J=1

II=11+1

TRLACIIY) 1C0,192, 192
JJd=1

ALPLII)==ALP(JJ)
ALP(JJ#1)==pLP(J )+ 1)
GO 10 194

dJ=1

ALP(JJ)=ABSF (ALP(JJ))
ALP(JJ+V ) =APSFIALP(JJ+1))
SENSE LIGHT 1

IF(IUP) 1955,1933,1950
SENSE LIGHT &

K=1

JJ=1

IF(II=-MI15,19,14
FORMAT (LF16.6)

END

31
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Input

For the second program, the input data consists of the following

cards:
Card No.

1

3toN

N+ 1ltoM
M+ ltoL

Columns

1
2-72
1-6
T-12
13-18
19-24
25-40
1-16
17-NN*
1-NN
1-NN

Contents

1

Problem identification
M

MM

10P

NN

DELX

EN

H(0)

values of A
values of AF

*  The first value of H(0) is punched in Columns 17-32, and successive
IOP values are punched; field width of 16 up to and including column NN;
4 words per card.

For the first program:
same as the second program, except

IOP = 2
NN =0
leave cards N + 1 to L off.
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V  DISCUSSION OF RESULTS

As discussed earlier, the emphasis in the present work was
placed more on the formulation and the solution of the problem than on
the exploitation of the results. The program included in part IV of the
report will allow anyone to generate immediately as many velocity and
pressure distributions as he wishes.

Typical velocity and pressure distributions are shown in
Figures 6 and 7 for several values of the curvature parameter A. The
first figure shows a plot of G( 7( ) against T( . This only represents
the x-component of the velocity; in order to have the true velocity
distribution, it would be necessary to add the y-component of the
velocity. The plot is representative, however, since v is expected
to be small compared to u. The velocity distribution plot shows that,
as the curvature increases, the maximum velocity U increases and the
location of the point of maximum velocity moves radially outwards (in
the region of positive curvature, or, for an annular jet, towards the
center of the cavity). This trend is in agreement with the experiment-
al data on two-dimensional curved jets of Reference 7. Overall,
however, the differences between straight and curved jet velocity
distributions are not substantial (again, this could be modified due to
the effect of the transverse velocity).

Figure 7 shows a plot of the calculated pressure distribution
across the jet. It can be seen that the pressure variation is not
exactly linear as the momentum theory would predict. Also, the
pressure rise on both sides of the axis of the jet are not exactly
equal.
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